
Constraint Action - Exploit, Elevate, Remove
The	time	to	implement	code	changes.	The	batch	
size	is	too	large,	and	inhibits	flow.	

Exploit	the	Constraint:	Make	smaller	changes,	
more	frequently.	Build	the	system	after	each	
change.	

The	time	to	build	the	changed	code	doesn’t	
support	the	more	frequent	changes.	

Exploit	the	Constraint:	Automate	the	build	
process	with	a	script	or	build	tool.	

It	takes	too	long	before	one	developer’s	change	
is	accommodated	by	another	developer.	
Sometimes	developers	are	working	with	stale	
versions.	

Exploit	the	Constraint:	All	developers	pull	
from	and	integrate	to	the	mainline	of	the	code	
repository.	

The	time	to	integrate	code	changes	can’t	
support	the	more	frequent	integration.	
Sometimes	one	change	conflicts	with	other	
functionality.	

Exploit	the	Constraint:	Use	automated	unit	
testing,	specifically	Test	Driven	Development,	
to	reduce	the	time	it	takes	to	know	if	one	
change	has	violated	the	assumptions	of	other	
code.	Run	the	unit	tests	after	each	build.	

The	time	to	deploy	a	changed	system	can’t	
support	the	more	frequent	changes.	Sometimes	
something	goes	wrong	in	the	deployment	
process,	and	it	takes	even	longer.	

Exploit	the	Constraint:	Script	the	deployment	
process	so	that	it	is	repeatable	and	automated.	

The	time	to	verify	proper	business	function	
and	detect	regressions	can’t	support	the	more	
frequent	integration.	Sometimes	some	aspects	
of	the	desired	functionality	are	missing	or	
incorrect.	Sometimes	some	functionality	that	
did	work	correctly	no	longer	does.	

Exploit	the	Constraint:	Use	automated	
acceptance	tests	to	know	when	desired	
business	functionality	has	been	achieved	or	
has	regressed.	Run	the	acceptance	tests	after	
each	successful	unit	test.	

Automated	tests	don’t	detect	unanticipated	
display	and	operation	problems.	Manual	
regression	testing	would	have	noticed	such	
issues	in	the	course	of	testing.	

Elevate	and	Remove	the	Constraint:	Perform	
Exploratory	Testing	on	a	less-frequent	
interval	to	notice	these	issues.	

Sometimes	the	application	behaves	differently	
in	one	environment	than	another.	

Exploit	the	Constraint:	Do	not	rebuild	the	
system	for	each	environment.	Build	it	once	
and	store	the	deployable	version	in	an	artifact	
repository.	Deploy	the	same	artifact	to	all	
environments.	
Exploit	the	Constraint:	Do	not	let	the	
environments	vary	in	an	uncontrolled	
manner.	Script	the	configuration	of	each	
environment.	Have	minimal	differences	
between	the	environments.	Going	further,	
script	the	creation	of	each	environment	and	
recreate	from	scratch	frequently	(on	a	
schedule,	or	with	each	deployment).	

Frequent	deployments	to	production	cause	
noticeable	outages	during	deployment.	Any	
errors	or	mis-features	that	reach	production	
cause	turmoil	for	the	users.	

Exploit	the	Constraint:	Use	zero-downtime	
deployment	and	flexible	release	strategies	
(blue-green	deployments,	canary	releases,	
dark	releases)	

Production	issues,	especially	slow-downs	and	
partial	outages,	may	go	unnoticed	until	users	
complain.	This	makes	them	slower	to	fix	and	
greater	in	impact.	

Elevate	and	Remove	the	Constraint:	Add	
monitoring	to	enable	viewing	critical	aspects.	
Record	metrics	to	view	how	these	aspects	vary	
over	time.	

We	want	to	deliver	value	to	customers	more	frequently	and	reliably.	

Licensed 2018 by George Dinwiddie under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Implementing DevOps using the Theory of Constraints

3. Subordinate other activities to support the constraint.
4. Elevate the costraint and take actions, perhaps restructuring the process, to eliminate it from
5. Repeat these five steps on the new constraint once this one is no longer the limiting factor.

 The Theory of Constraints offers a five-step process to system improvement:

 The Theory of Constraints says that a system's throughput is, at any given time, controlled by its
most limiting factor, or bottleneck. Improving performance at other points in the system is unlikely
to improve system performance.

1. Identify the current constraint that is limiting system operation.
2. Exploit the constraint--make improvements to the throughput at the constraint using existing

About the Theory of Constraints

