Implementing DevOps using the Theory of Constraints

We want to deliver value to customers more frequently and reliably.

Constraint

Action - Exploit, Elevate, Remove

The time to implement code changes. The batch Exploit the Constraint: Make smaller changes,

size is too large, and inhibits flow.

more frequently. Build the system after each
change.

The time to build the changed code doesn’t
support the more frequent changes.

Exploit the Constraint: Automate the build
process with a script or build tool.

It takes too long before one developer’s change
is accommodated by another developer.
Sometimes developers are working with stale
versions.

Exploit the Constraint: All developers pull
from and integrate to the mainline of the code
repository.

The time to integrate code changes can’t
support the more frequent integration.
Sometimes one change conflicts with other
functionality.

Exploit the Constraint: Use automated unit
testing, specifically Test Driven Development,
to reduce the time it takes to know if one
change has violated the assumptions of other
code. Run the unit tests after each build.

The time to deploy a changed system can’t
support the more frequent changes. Sometimes
something goes wrong in the deployment
process, and it takes even longer.

Exploit the Constraint: Script the deployment
process so that it is repeatable and automated.

The time to verify proper business function
and detect regressions can’t support the more
frequent integration. Sometimes some aspects
of the desired functionality are missing or
incorrect. Sometimes some functionality that
did work correctly no longer does.

Exploit the Constraint: Use automated
acceptance tests to know when desired
business functionality has been achieved or
has regressed. Run the acceptance tests after
each successful unit test.

Automated tests don’t detect unanticipated
display and operation problems. Manual
regression testing would have noticed such
issues in the course of testing.

Elevate and Remove the Constraint: Perform
Exploratory Testing on a less-frequent
interval to notice these issues.

Sometimes the application behaves differently
in one environment than another.

Exploit the Constraint: Do not rebuild the
system for each environment. Build it once
and store the deployable version in an artifact
repository. Deploy the same artifact to all
environments.

Exploit the Constraint: Do not let the
environments vary in an uncontrolled
manner. Script the configuration of each
environment. Have minimal differences
between the environments. Going further,
script the creation of each environment and
recreate from scratch frequently (on a
schedule, or with each deployment).

Frequent deployments to production cause
noticeable outages during deployment. Any
errors or mis-features that reach production
cause turmoil for the users.

Exploit the Constraint: Use zero-downtime
deployment and flexible release strategies
(blue-green deployments, canary releases,
dark releases)

Production issues, especially slow-downs and
partial outages, may go unnoticed until users
complain. This makes them slower to fix and

greater in impact.

Elevate and Remove the Constraint: Add
monitoring to enable viewing critical aspects.
Record metrics to view how these aspects vary
over time.

Licensed 2018 by George Dinwiddie under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)



About the Theory of Constraints

The Theory of Constraints says that a system's throughput is, at any given time, controlled by its
most limiting factor, or bottleneck. Improving performance at other points in the system is unlikely
to improve system performance.

The Theory of Constraints offers a five-step process to system improvement:

1. Identify the current constraint that is limiting system operation.

2. Exploit the constraint--make improvements to the throughput at the constraint using existing
3. Subordinate other activities to support the constraint.

4. Elevate the costraint and take actions, perhaps restructuring the process, to eliminate it from
5. Repeat these five steps on the new constraint once this one is no longer the limiting factor.



